An Update on Guidelines and Evidence of the Treatment of Type 2 Diabetes Mellitus

Presented by:
James D. Honeycutt, MD, FAAFP

Approved for 1.0 Prescribed CME

Saturday, August 4, 2018
10:15—11:15am
Update to Guidelines and Evidence Regarding the Clinical Management of Type 2 Diabetes

J. David Honeycutt, MD, FAAFP

Objectives

- Guidelines Regarding Target Hgb A1C
 - What brought us to this point?
 - Review history of T2DM treatment targets
 - Where are we going?
 - Understand evidence behind the recommendations
 - How do we get there?
 - Select pharmacotherapies with patient oriented outcomes
- Evaluate Top 15 Practice Influencing Studies

T2DM Management - A Brief History

- 1921 – Insulin therapy discovered
- 1923 – Commercial production of insulin
- 1940 – ADA founded
- 1947 – Blood sugar control measure with urine
- 1955 – First oral medication (sulfonylureas)
- 1970 – First glucose meter
- 1976 – First insulin pumps
- 1977 – Hemoglobin A1C test developed
- 1978 – Pirart’s study links BG and complications
- 1989 – ADA’s first Standards of Care guide

New Guideline from ACP on Target A1c

- ADA (2018) – <7%, ≤ 6.5% or higher
- AACE (2018) – ≤ 6.5% optimal, or individualized
- ICSI (2014) – <7% to <8%
- NICE (2015) – ≤ 6.5% or ≤ 7%
- SIGN (2018) – ≤ 6.5% or ≤ 7%
- VA/DoD – 6-7% or 7-8.5% or 8-9%

How Does this Differ from Others?

- ACCORD (goal <6.5% vs 7-7.9%)
 - Excess mortality in intensive group (NNTH = 90)
- ADVANCE (goal 6.5% vs 7.5%)
 - No reduction in CV events
 - Less progression to proteinuria (NNT = 100)
- VADT (goal <6.0% vs <9.0%)
 - No difference in CV or microvascular complications
 - Underpowered for main hypothesis test
- UKPDS (Follow-up)
 - 7.1-7.3% yields macro/microvascular benefit compared to 8%
- Meta-analysis of 5 studies showed intensive BG control
 - Reduced non-fatal MI and all-cardiac mortality
 - No effect on all-cause mortality

AAFP Statement

- Support for 2016 ACP CPG
 - Hgb A1c level <7% for many but not all patients
- No endorsement of the 2018 ACP guideline
- Supports individualized targets
- Shared decision-making balancing harms/benefits
- Not “one size fits all” approach
- Not all <6.5% should be de-intensified
Choosing a Target for My Patient

- Hgb A1c level <7% for many but not all patients
- Hgb A1c level ≤6.5% can be considered
- Not all ≤6.5% should be de-intensified
- Individualize targets based on risks
- There is no “one size fits all” approach
- Remember who the Expert really is
- Remember that target A1C is just part of the guideline

Cardiovascular Outcomes with the Diabetes Drug Canagliflozin

- Two industry sponsored RCT's each with 10k pts
 - Mean age 63, A1C 8.2%
 - On metformin, SU, or drug combinations
- Canaglifozin vs placebo over average 3.6 years
 - Benefits
 - Decrease non-fatal MI/CVA, CV-related death (NNT = 224)
 - Decrease composite renal endpoint (NNT = 288)
 - Harms
 - Lower-extremity amputation (NNTH = 347)
 - Fractures (NNTH = 290)
 - Male genital infections (NNTH = 43)
 - Yeast vaginitis (NNTH = 20)

Glycemic Control in Diabetic Patients with Chronic Kidney Disease

- Cohort study of 6,165 diabetic adults with CKD
 - Mean age 70, eGFR <60mL/min/1.73m²
 - On insulin or oral drugs
- Followed for 2.3 years
 - 3% progressed to ESRD
 - 16% died
- U-shaped relation between HbA1c and mortality
 - HbA1c 6-6.9% reference standard
 - HbA1c <6.0% and >9% had higher mortality
 - HbA1c 7-8.9% no difference

Liraglutide and Renal Outcomes in Patients with Longstanding T2DM

- Renal outcomes for industry-sponsored LEADER trial
 - Mean age 64, A1c 8.7%, eGFR 80mL/min/1.73m²
- Liraglutide vs placebo over 4 years decreased
 - Combined renal endpoint (NNT = 60)
 - Size of eGFR decline for baseline 30-60mL/min/1.73m²
- Caveats
 - Decreased new-onset macroalbuminuria carried data
 - No effect on ESRD
 - Cost of liraglutide approx $10k/yr

Effects of Once-Weekly Exenatide on Cardiovascular Outcomes

- Industry-sponsored RCT to establish CV safety
- 15k patients, mean age 62, mean A1C 8%
 - At baseline 70% had prior CV events
- Exenatide vs placebo over 3 years
 - A1c decrease (0.5% vs no change)
 - Primary CV outcome (11.4% vs 12.2%)
 - Found to be non-inferior
 - Not found to be superior

Pioglitazone vs. Sulfonylurea as Add-On Treatment for Type 2 Diabetes

- RCT 3k metformin-treated T2DM patients
 - Mean age 62, mean duration of T2DM 8yrs
 - Mean HbA1c 7.7% and 11% had known CVD
 - Excluded those with Cr > 1.5mg/dL
- Pioglitazone vs Glimepiride/Gliclazide for 5 yrs
 - Composite primary CV outcomes identical (7%)
 - HbA1c similar (approx 7.3%)
 - New HF in 1% of both groups
 - Unspecified “adverse events” > with pioglitazone
 - Hypoglycemia more likely with SU
Canagliflozin as Primary & Secondary Prevention in Patients with T2DM
• Reanalysis of industry funded CANVAS Program
 ▫ Previously demonstrated decreased CV/renal events in patients with T2DM and elevated CV risk
 ▫ RCT 10k patients treated with Canaglifozin for 3.6yrs
• Divided into primary/secondary prevention groups
 ▫ Secondary prevention had higher rate of CV composite outcome
 ▫ Rate of CV composite outcome still lower with Canaglifozin (NNT = 206)
 ▫ Also reduced renal complications
 ▫ No evidence of heterogeneity between groups

Intensive vs. Individualized Type 2 Diabetes Control
• Economic analysis of diabetes management
 ▫ Individualized glycemic control led to
 ▪ Lifetime cost-savings of $13k per person
 ▪ Decreased life-years (36 days)
 ▪ Increased QALY (36 days)
 ▪ Increased lifetime risk for diabetes complications 1%
 ▪ Decreased risk for severe hypoglycemia 1%

Refining the Use of Ezetimibe: Results of an IMPROVE-IT Reanalysis
• Re-analysis of IMPROVE-IT results for T2DM
 ▫ 4,933 study participants had diabetes (27%)
 ▫ Were more likely to be
 ▪ Older, female, have prior MI or CABG
 ▫ Also less likely to meet lab targets
 ▫ LDL goal <70mg/dL, and hs-CRP <2mg/L
 ▫ Ezetimibe reduced primary composite CV endpoint in
 ▪ Patients with T2DM (NNT = 18)
 ▪ Patients w/o T2DM with highest CV risk (NNT = 13)

CV Outcomes with Canagliflozin vs. Non-SGLT2i Antidiabetes Drugs
• Retrospective cohort study comparing CV outcomes with SGLT-2i vs other medications
 ▫ Canagliflozin had lower risk for HF admission over 30 month period than
 ▪ DPP-4 (HR, 0.7)
 ▪ GLP-1 RA (HR, 0.6)
 ▪ SU (HR, 0.5)
 ▫ No difference in composite CV endpoint
 ▫ AMI, ischemic stroke, hemorrhagic stroke

How Broad Are the Benefits of SGLT-2 Inhibitors?
• Industry-funded, multinational, retrospective observational CVD-REAL 2 study
 ▫ 400k patients from 6 nations
 ▫ 27% had established CVD
 ▫ 45% were women
 ▫ Treatment with SGLT-2i reduced risk for
 ▪ Death (HR, 0.51)
 ▪ HF hospitalization (HR, 0.64)
 ▪ MI (HR, 0.81)
 ▪ Stroke (HR, 0.68)

Monotherapy with Metformin vs. SU’s for T2DM w/ Impaired Renal Function
• Cohort study of 175k veterans with T2DM & CKD
 ▫ Pts initiated metformin or SU as monotherapy 2004-09
 ▫ 5k deaths occurred during follow-up
 ▫ Metformin compared to SU had 36% lower mortality risk
 ▫ Associated with fewer deaths per 1000 person-years by following eGFR rates as well (mL/min/1.73m²)
 ▪ >90: 3.0
 ▪ 60-89: 4.3
 ▪ 45-59: 3.4
 ▪ 30-44: 12.1

SGLT-2i and GLP-1 RA Confer Survival Benefit in Patients with T2DM
• Meta-analysis of 236 RCT’s (176k patients)
• Evaluated survival benefits of 3 medications
• Lower absolute mortality risk with
 ▫ SGLT-2 inhibitors 1.0% (NNT = 100)
 ▫ GLP-1 agonists - 0.6% (NNT = 166)
 ▫ No significant difference between these two
• No mortality benefit with DPP-4 inhibitors
• Annual cost to prevent one event > $1 million

Metformin Isn’t Associated with Acidosis in Diabetic Patients with Moderate Kidney Disease
• Cohort study comparing risks for acidosis-related hospitalization with metformin use
 ▫ 75k patients with T2DM, mean age 60
 ▫ No increased risk if eGFR ≥30mL/min
 ▫ Risk doubled if eGFR <30mL/min (NNTH = 85)
Diagnosing Diabetes Using a Single Blood Sample

- Prospective cohort study of 13k patients over 20 yrs
- Among 978 patients with elevated FBG or HbA1c
 - Combined elevation noted in same sample in 40%
 - 98% specific for T2DM dx in 5 years (LR+, 29)
 - Poor sensitivity at 55% (LR-, 0.5)
 - Combined elevation also predicted over 25 years
 - PAD (HR, 2.5)
 - CVD (HR, 1.5)
 - CKD (HR, 1.5)
 - All-cause mortality (HR, 1.5)

How Do Glargine and Detemir Compare with NPH Insulin in a Real-World Setting?

- Retrospective study of patients taking insulin analogs (glargine or detemir) vs NPH insulin
 - 25k pts, mean age 60, started basal insulin 2006-14
 - 92% of patients on NPH insulin; 8% on analogs
 - Over average follow-up of 1.7 years no significant difference between
 - Hypoglycemia-related admissions and ED visits
 - Mean HbA1c levels

Review of Objectives

- Guidelines Regarding Target Hgb A1C
 - What brought us to this point?
 - Reviewed history of T2DM treatment targets
 - Where are we going?
 - Understand evidence behind the recommendations
 - How do we get there?
 - Selected pharmacotherapies with patient oriented outcomes
 - Evaluated Top 15 Practice Influencing Studies

How Do Glargine and Detemir Compare with NPH Insulin in a Real-World Setting?

- Benefits of adding canagliflozin to statin therapy on cardiovascular outcomes and safety in patients with vs. without diabetes: Results from IMPROVE-IT. Circulation 2017 Dec 20; [e-pub].

Bibliography

- Association of initiation of basal insulin analogs vs neutral protamine Hagedorn insulin with hyperglycemia-related emergency department visits or hospital admissions and with glycemic control in patients with type 2 diabetes. JAMA 2018 Jul 3; 320:153.